The Editors:
Prof. Dr. rer. nat. habil. Wolfgang Grellmann,
Martin-Luther-University Halle-Wittenberg, Centre of Engineering Science, D-06099 Halle and
Polymer Service GmbH Merseburg, D-06217 Merseburg, Germany

Prof. Dr.-Ing. habil. Sabine Seidler
Vienna University of Technology, Institute of Materials Science and Technology
Favoritenstraße 9, A-1040 Vienna, Austria

Distributed in North and South America by:
Hanser Publications
6915 Valley Avenue, Cincinnati, Ohio 45244-3029, USA
Fax: (513) 527-8801
Phone: (513) 527-8977
www.hanserpublications.com

Distributed in all other countries by
Carl Hanser Verlag
Postfach 86 04 20, 81631 München, Germany
Fax: +49 (89) 98 48 09
www.hanser-fachbuch.de

The use of general descriptive names, trademarks, etc., in this publication, even if the former are not especially
identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks
Act, may accordingly be used freely by anyone. While the advice and information in this book are believed to be
true and accurate at the date of going to press, neither the author nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or
implied, with respect to the material contained herein.

Library of Congress Cataloging-in-Publication Data
Grellmann, Wolfgang, 1949-
Polymer testing / Wolfgang Grellmann, Sabine Seidler. -- 2nd edition.
pages cm
Includes bibliographical references and index.
Sabine, 1961- II. Title.
TA455.P58G7413 2013
620.1’920287--dc23
2013026084

Bibliografische Information Der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie;
detaillierte bibliografische Daten sind im Internet über <http://dnb.d-nb.de> abrufbar.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying or by any information storage and retrieval system, without permission
in writing from the publisher.

© Carl Hanser Verlag, Munich 2013
Production Management: Steffen Jörg
Coverconcept: Marc Müller-Bremer, www.rebranding.de, München
Coverdesign: Stephan Rönigk
Printed and bound by Kösel, Krugzell
Printed in Germany
Preface to the Second Edition

The textbook "Polymer Testing" is mainly intended for the education of university students and students of universities of applied sciences. This textbook was deemed to be necessary because the testing of polymers has become established as a separate scientific discipline within polymer sciences in recent years. The textbook was first published in German in 2005. An improved English version was published in 2007, and a Russian edition appeared in 2010 with special consideration given to the specific GOST standards.

The positive reviews from our colleagues demonstrate that the concept „Method – Parameters – Examples“ meets students’ needs and is also accepted in practice.

Although there have been no significant changes to basic testing methods since the first edition appeared, there have been considerable advances in the evaluation of structure-property correlations and standardisation. It has become increasingly necessary to provide material-scientific parameters to quantify the relationship between microstructure and macroscopic properties. Therefore, it seemed necessary to publish a second edition. The previous edition has been comprehensively revised, and the new edition covers all the latest developments in the field, including all amendments to the most important polymer test standards up to May 2013.

Using the same concept and methodical structure in the presentation of polymer test procedures, the parameters obtained by the latter and the selected examples, the new edition provides university students and students of universities of applied sciences with a good and fast source of information. This is why the textbook has been widely adopted by universities and universities of applied sciences for the teaching of „Polymer Testing“.

In order to provide support the lecturers, a PowerPoint presentation has been created for all pictures and tables. It can be downloaded from www.hanserpublications.com.

In this regard, we would like to thank Prof. Dr.-Ing. Christian Bierögel, in particular, for his valuable advice in the preparation of this edition and especially for the new publication of the pictures, which are now in colour, and his extensive work on producing the PowerPoint presentation of all pictures.
A Wiki dictionary, “Plastics Testing and Diagnostics”, has been produced on the scientific basis of the book and of publications from the Merseburg scientific school, and it often provides more detail than the book. The dictionary is available at www.polymerservice-merseburg.de/wiki-lexikon-kunststoffpruefung and can be used for practical work. An extensive compilation of fracture mechanics test specimens and approximation equations to calculate parameters in fracture mechanics are just two examples of what the dictionary offers.

We would like to thank Carl Hanser Verlag, especially Ms. Dr. N. Warkotsch, Ms. Dr. C. Strohm, Ms. Dipl.-Ing. (FH) U. Wittmann and Mr. S. Jörg, for their much-appreciated and reliable assistance.

June 2013

The Editors
Preface to the First Edition

This book is based on the editors' extensive experience in research, development and education in the field of materials science and especially polymer testing, polymer diagnostics and failure analysis. The results of their work were published in several reference books about deformation and fracture behavior of polymers, in numerous single publications in peer-reviewed scientific journals and in proceedings. Given the fact that the field of science undergoes a rapid and dynamic development it seemed prudent to present these results in a textbook for students.

The following factors convinced us that a comprehensive representation of the state of knowledge was needed:

• The ever-increasing importance of this materials group for continued technical progress led to an increasing share of polymers and compounds in various applications.
• The increased safety awareness led to the development of hybrid methods of polymer diagnostics, which enable a complex view of the connection between loading and material behavior under actual loading conditions and ambient influences.
• As a result of the development of fiber-reinforced thermoplastic and thermosetting composite materials, new challenges to polymer testing methods emerged.
• The increasing use of polymers and elastomers in medical technology for various applications requires the development of technological testing methods for viability, serviceability, operating safety and/or service life.
• As a consequence of the trend to miniaturization components (microsystems), more suitable testing methods are necessary for the evaluation of various thermomechanical loadings of materials properties, e.g., in highly integrated electronic components.

In addition, a number of new standards and regulatory codes for polymer testing have been introduced over the past years, further emphasizing the need for a redesigned textbook for this discipline of science. The book presents a comprehensive representation of knowledge provided by respected colleagues from universities, universities of applied sciences and the polymer industry. A list of co-authors as well
as acknowledgements for numerous colleagues and co-workers follow on separate pages.

The editors and co-authors tried hard to overcome the limits of classic polymer testing using ASTM and ISO standards in order to make the importance of polymer testing for the development and application of new polymers, composite materials and materials compounds, as well as the introduction of new technologies, more recognizable.

This book is primarily designed for students of bachelor, diploma and master courses of material science, material technology, plastic technology, mechanical engineering, process engineering and chemical engineering. It can be used by students, teachers of universities and colleges for supplementary studies in the disciplines of chemistry and industrial engineering. The methods of polymer testing are also essential to the development and application of biomedical or nanostructured materials.

With the publication of this book we hope that it will not only serve the important task of training of young scientists in physical and material oriented disciplines, but will also make a contribution to further education of professional polymer testers, design engineers, and technologists.

We thank Carl Hanser Publishers for publishing this book, entitled “Polymer Testing”, especially we are grateful to Dr. Christine Strohm who thoroughly revised the complete text for this edition. We also thank Dr. Paul I. Anderson for the translation of several chapters. The main idea of this book was based on the 1992s book by Dr. Heinz Schmiedel “Handbook of Polymer Testing”, written in German language. We kept the physical-methodical approach and also, the comprehensive chapter “Fracture Toughness Measurements in Engineering Plastics” based on our research work in this field for many years. For example it is pointed out on the extensive collection of fracture mechanics specimen and the evaluation equations for determination of fracture mechanics parameters.

We want to thank sincerely all co-workers from the Center of Engineering Science and the Institute of Polymer Materials e.V. of the Martin-Luther-University of Halle-Wittenberg and all collaborators from the Institute of Materials Science and Technology of the Vienna University of Technology who, with their commitment and their willing cooperation, made the publication of this book possible in the first place.

Sabine Seidler, Vienna
Wolfgang Grellmann, Halle

May 2007
Prof. Dr. Volker Alstädte
University of Bayreuth, Germany
(Chapter 10)

Prof. Dr. Monika Bauer
Fraunhofer-Einrichtung für Polymermaterialien und Composite PYCO, Teltow, Germany
Technical University of Brandenburg (BTU), Cottbus, Germany
(Part 11.2)

Prof. Dr. Christian Bierögel
Martin Luther University Halle-Wittenberg and Polymer Service GmbH Merseburg, Institute of Martin Luther University Halle-Wittenberg, Germany
(Chapter 2, Part 4.3 and Chapter 9)

Prof. Dr. Gert Busse
University of Stuttgart, Germany
(Chapter 8)

Prof. Dr. Dr. Klaus Friedrich
Institute for Composite Materials (IVW), Technical University of Kaiserslautern, Germany
(Part 4.8)

Dr. Henrik Höninger
IMA Materialforschung und Anwendungstechnik Dresden, Germany (formerly)
(Parts 4.5, 4.6 and 11.3)

Dr. Thomas Lüpke
Kunststoff-Zentrum (KUZ) Leipzig, Germany
(Parts 4.1 and 4.2)

Prof. Dr. Bernd Michel
FhG Institute for Reliability and Microintegration (IZM) Berlin, Germany
(Chapter 12)
Co-authors

Prof. Dr. Hans-Joachim Radusch
Martin Luther University Halle-Wittenberg, Germany
(Chapter 3)

Dr. Falko Ramsteiner
BASF Group Ludwigshafen, Germany (formerly)
(Chapter 7)

Prof. Dr. Andreas Schönhals
Federal Institute for Materials Research and Testing (BAM) Berlin, Germany
(Part 6.3)

Dr. Jörg Trempler
Martin Luther University Halle-Wittenberg, Germany (formerly)
(Chapter 6.2)

The chapters and sections not listed above were written by the editors.

We owe particular gratitude for their assistance with the development and compilation of the manuscript to:
- Ms. Dipl.-Ing. Yvonne Chowdhury, InnoMat GmbH, Teltow, Germany
 (Part 11.2),
- Ms. Dipl.-Ing. Ivonne Pegel, ESW GmbH, Wedel, Germany (Chapter 10) and
- Mr. Dr. Hans Walter, FhG Institute for Reliability and Microintegration (IZM)
 Berlin, Germany (Chapter 12).

In particular we would like to thank co-author Prof. Dr. Christian Bierögel not only for his contributions to the book, but moreover for his comprehensive assistance and critical advice during the composition of the manuscript.

We thank Prof. Dr. Peter Grau for the professional revision of the parts on micro-hardness testing.

For the critical revision of single chapters we thank our longtime co-workers Ao. Prof. Dr. mont. Vasiliki-Maria Archodoulaki, Dr. Thomas Koch, Prof. Dr. Ines Kotter, Dr. Ralf Lach, Prof. Dr. Beate Langer and finally Dr. Katrin Reincke.

We thank Ms. Dagmar Fischer for the technical editing of figures and images that we provided in various graphical file formats and their transformation into the format required for printing by Carl Hanser Publishers.
Table of Contents

Nomenclature (Selection) ... XXI
Terminology .. XXIX
Symbols and Abbreviated Terms XXXIII

1 Introduction

1.1 The Genesis of Polymer Testing as a Science 1
1.2 Factors Influencing Data Acquisition 4
1.3 Classification of Polymer Testing Methods 5
1.4 Standards and Regulatory Codes for Polymer Testing 7
1.5 Compilation of Standards ... 10
1.6 References by Area of Specialization 11

2 Preparation of Specimens

2.1 Introduction .. 15
2.2 Testing Molding Materials .. 17
2.3 Specimen Preparation .. 18
2.3.1 General Remarks ... 18
2.3.2 Specimen Preparation by Direct Shaping 19
2.3.2.1 Production of Specimens from Thermoplastic Molding Materials ... 19
2.3.2.2 Production of Specimens from Thermosetting Molding Materials ... 26
2.3.2.3 Production of Specimens from Elastomeric Materials 28
2.3.3 Specimen Preparation by Indirect Shaping 29
2.3.4 Characterization of Specimen State 31
2.4 Specimen Preparation and Conditioning 33
2.5 Compilation of Standards .. 36
2.6 References ... 38

3 Determining Process-Related Properties

3.1 Molding Materials .. 39
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>Determining Bulk Material Properties</td>
<td>40</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Bulk Density, Compacted Apparent Density, Fill Factor</td>
<td>40</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Pourability, Angle of Repose, Slide Angle</td>
<td>41</td>
</tr>
<tr>
<td>3.3</td>
<td>Determining the Properties of Fluids</td>
<td>42</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Rheological Fundamentals</td>
<td>42</td>
</tr>
<tr>
<td>3.3.1.1</td>
<td>Viscosity of Newtonian and non-Newtonian Fluids</td>
<td>42</td>
</tr>
<tr>
<td>3.3.1.2</td>
<td>Temperature and Pressure Dependence of Viscosity</td>
<td>46</td>
</tr>
<tr>
<td>3.3.1.3</td>
<td>Molecular Mass Influence on Viscosity</td>
<td>46</td>
</tr>
<tr>
<td>3.3.1.4</td>
<td>Volume Properties</td>
<td>47</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Measuring Rheological Properties</td>
<td>48</td>
</tr>
<tr>
<td>3.3.2.1</td>
<td>Rheometry/Viscometry</td>
<td>48</td>
</tr>
<tr>
<td>3.3.2.2</td>
<td>Rotational Rheometers</td>
<td>49</td>
</tr>
<tr>
<td>3.3.2.3</td>
<td>Capillary Rheometers</td>
<td>55</td>
</tr>
<tr>
<td>3.3.2.4</td>
<td>Extensional Rheometers</td>
<td>66</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Selecting Measurement Methods for Characterizing Polymer Materials</td>
<td>68</td>
</tr>
<tr>
<td>3.4</td>
<td>Compilation of Standards</td>
<td>69</td>
</tr>
<tr>
<td>3.5</td>
<td>References</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>Mechanical Properties of Polymers</td>
<td>73</td>
</tr>
<tr>
<td>4.1</td>
<td>Fundamental Principles of Mechanical Behavior</td>
<td>73</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Mechanical Loading Parameters</td>
<td>73</td>
</tr>
<tr>
<td>4.1.1.1</td>
<td>Stress</td>
<td>73</td>
</tr>
<tr>
<td>4.1.1.2</td>
<td>Strain</td>
<td>76</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Material Behavior and Constitutive Equations</td>
<td>77</td>
</tr>
<tr>
<td>4.1.2.1</td>
<td>Elastic Behavior</td>
<td>77</td>
</tr>
<tr>
<td>4.1.2.2</td>
<td>Viscous Behavior</td>
<td>80</td>
</tr>
<tr>
<td>4.1.2.3</td>
<td>Viscoelastic Behavior</td>
<td>82</td>
</tr>
<tr>
<td>4.1.2.4</td>
<td>Plastic Behavior</td>
<td>88</td>
</tr>
<tr>
<td>4.2</td>
<td>Mechanical Spectroscopy</td>
<td>90</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Experimental Determination of Time Dependent Mechanical Properties</td>
<td>90</td>
</tr>
<tr>
<td>4.2.1.1</td>
<td>Static Testing Methods</td>
<td>91</td>
</tr>
<tr>
<td>4.2.1.2</td>
<td>Dynamic–Mechanical Analysis (DMA)</td>
<td>92</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Time and Temperature Dependence of Viscoelastic Properties</td>
<td>99</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Structural Factors Influencing Viscoelastic Properties</td>
<td>102</td>
</tr>
<tr>
<td>4.3</td>
<td>Quasi-Static Test Methods</td>
<td>104</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Deformation Behavior of Polymers</td>
<td>104</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Tensile Tests on Polymers</td>
<td>110</td>
</tr>
<tr>
<td>4.3.2.1</td>
<td>Theoretical Basis of the Tensile Test</td>
<td>110</td>
</tr>
<tr>
<td>4.3.2.2</td>
<td>Conventional Tensile Tests</td>
<td>113</td>
</tr>
<tr>
<td>4.3.2.3</td>
<td>Enhanced Information of Tensile Tests</td>
<td>122</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Tear Test</td>
<td>128</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Compression Test on Polymers</td>
<td>130</td>
</tr>
<tr>
<td>4.3.4.1</td>
<td>Theoretical Basis of the Compression Test</td>
<td>130</td>
</tr>
<tr>
<td>4.3.4.2</td>
<td>Performance and Evaluation of Compression Tests</td>
<td>133</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Bend Tests on Polymers</td>
<td>138</td>
</tr>
<tr>
<td>4.3.5.1</td>
<td>Theoretical Basis of the Bend Test</td>
<td>138</td>
</tr>
<tr>
<td>4.3.5.2</td>
<td>The Standardized Bend Test</td>
<td>144</td>
</tr>
<tr>
<td>4.4</td>
<td>Impact Loading</td>
<td>149</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Introduction</td>
<td>149</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Charpy Impact Test and Charpy Notched Impact Test</td>
<td>150</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Tensile-Impact and Notched Tensile-Impact Tests</td>
<td>155</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Free-falling Dart Test and Puncture Impact Test</td>
<td>158</td>
</tr>
<tr>
<td>4.5</td>
<td>Fatigue Behavior</td>
<td>161</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Fundamentals</td>
<td>161</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Experimental Determination of Fatigue Behavior</td>
<td>163</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Planning and Evaluating Fatigue Tests</td>
<td>167</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Factors Influencing the Fatigue Behavior and Service-Life Prediction of Service Life for Polymers</td>
<td>169</td>
</tr>
<tr>
<td>4.6</td>
<td>Long-Term Static Behavior</td>
<td>171</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Fundamentals</td>
<td>171</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Tensile Creep Test</td>
<td>173</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Flexural Creep Test</td>
<td>180</td>
</tr>
<tr>
<td>4.6.4</td>
<td>Creep Compression Test</td>
<td>181</td>
</tr>
<tr>
<td>4.7</td>
<td>Hardness Test Methods</td>
<td>183</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Principles of Hardness Testing</td>
<td>183</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Conventional Hardness Testing</td>
<td>185</td>
</tr>
<tr>
<td>4.7.2.1</td>
<td>Test Methods for Determining Hardness Values after Unloading</td>
<td>185</td>
</tr>
<tr>
<td>4.7.2.2</td>
<td>Test Methods for Determining Hardness Values under Load</td>
<td>187</td>
</tr>
<tr>
<td>4.7.2.3</td>
<td>Special Testing Methods</td>
<td>191</td>
</tr>
<tr>
<td>4.7.2.4</td>
<td>Comparability of Hardness Values</td>
<td>191</td>
</tr>
<tr>
<td>4.7.3</td>
<td>Instrumented Hardness Test</td>
<td>193</td>
</tr>
<tr>
<td>4.7.3.1</td>
<td>Fundamentals of Measurement Methodology</td>
<td>193</td>
</tr>
</tbody>
</table>
4.7.3.2 Material Parameters Derived from Instrumented Hardness Tests
4.7.3.3 Examples of Applications
4.7.4 Correlating Microhardness with Yield Stress and Fracture Toughness
4.8 Friction and Wear
4.8.1 Introduction
4.8.2 Fundamentals of Friction and Wear
4.8.2.1 Frictional Forces
4.8.2.2 Temperature Increase Resulting from Friction
4.8.2.3 Wear as a System Characteristic
4.8.2.4 Wear Mechanisms and Formation of Transfer Film
4.8.3 Wear Tests and Wear Characteristics
4.8.3.1 Selected Model Wear Tests
4.8.3.2 Wear Parameters and Their Determination
4.8.3.3 Wear Parameters and Their Presentation
4.8.4 Selected Experimental Results
4.8.4.1 Counterbody Influence
4.8.4.2 Influencing of Fillers
4.8.4.3 Influence of Loading Parameters
4.8.4.4 Predicting Properties Via Artificial Neural Networks
4.8.5 Summary
4.9 Compilation of Standards
4.10 References

5 Fracture Toughness Measurements in Engineering Plastics
5.1 Introduction
5.2 Current State and Development Trends
5.3 Fundamental Concepts of Fracture Mechanics
5.3.1 Linear-Elastic Fracture Mechanics (LEFM)
5.3.2 Crack-Tip-Opening Displacement (CTOD) Concept
5.3.3 J-Integral Concept
5.3.4 Crack Resistance (R-) Curve Concept
5.4 Experimental Determination of Fracture Mechanical Parameters
5.4.1 Quasi-static Loading
5.4.2 Instrumented Charpy Impact Test
5.4.2.1 Test Configuration
5.4.2.2 Maintenance of Experimental Conditions
Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization. The scope includes but is not limited to the following main topics