Operating Systems Principles

Lubomir F. Bic
University of California, Irvine

Alan C. Shaw
University of Washington, Seattle
Library of Congress Cataloging-in-Publication Data

Vice President and Editorial Director, ECS:
Publisher:
Associate Editor:
Editorial Assistant:
Vice President and Director of Production and Manufacturing, ESM:
Executive Managing Editor:
Assistant Managing Editor:
Production Editor:
Director of Creative Services:
Creative Director:
Art director:
Cover Designer:
Art Editor:
Manufacturing Manager:
Manufacturing Buyer:
Marketing Manager:
Marketing Assistant:

© 2003 by Pearson Education, Inc.
Pearson Education, Inc.
Upper Saddle River, New Jersey 07458

All rights reserved. No part of this book may
be reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

ISBN

Pearson Education LTD., London
Pearson Education Australia PTY. Limited, Sydney
Pearson Education Singapore, Pte. Ltd
Pearson Education North Asia Ltd, Hong Kong
Pearson Education Canada, Ltd., Toronto
Pearson Educación de Mexico, S.A. de C.V.
Pearson Education - Japan, Tokyo
Pearson Education Malaysia, Pte. Ltd
To Zuzana and Alexander

Lubomir Bic

To Elizabeth

Alan Shaw
Preface

Operating systems bridge the gap between the hardware of a computer system and the user. Consequently, they are strongly influenced by hardware technology and architecture, both of which have advanced at a breathtaking pace since the first computers emerged in the 1940s. Many changes have been quantitative: the speed of processors, memories, and devices has been increasing continuously, whereas their size, cost, and power consumption has been decreasing. But many qualitative changes also have occurred. For example, personal computers with sophisticated input, output, and storage devices are now omnipresent; most also are connected to local area networks or the Internet. These advances have dramatically reshaped the world within which operating systems must exist and cooperate. Instead of managing a single processor controlling a collection of local memories and I/O devices, contemporary operating systems are required to manage highly parallel, distributed, and increasingly more heterogeneous configurations.

This book is an introduction to operating systems, appropriate for computer science or computer engineering majors at the junior or senior level. One objective is to respond to a major paradigm shift from single-processor to distributed and parallel computer systems, especially in a world where it is no longer possible to draw a clear line between operating systems for centralized environments and those for distributed ones. Although most of the book is devoted to traditional topics, we extend and integrate these with basic ideas in distributed computing.

CONTENTS

After the introductory chapter, the book is organized into four main sections: Process Management and Coordination, Memory Management, File and I/O Management, and Protection and Security. At the end of each chapter, there is a list of the key concepts, terms, and abbreviations defined in the chapter; the back of the book contains a glossary.

Processes and Threads

Processes and, more recently, threads, are the basis of concurrency and parallelism, and have always been prominent parts of the study of operating systems. This area can be subdivided into two components: the creation of processes or threads, and their coordination. In Chapters 2 and 3, we treat the topic from the programming point of view, presenting a spectrum of constructs for expressing concurrency and for coordinating the execution of the resulting processes or threads. This includes the coordination of processes in a distributed environment, which must be based ultimately on message-passing rather than shared variables. In Chapters 4 and 5, we examine the problem from the implementation point of view by presenting the necessary data structures and operations to implement and manage processes and threads at the operating systems level. This discussion also includes issues of process and threads scheduling, interrupt handling, and other kernel functions. Chapter 6 is concerned with the important problem of deadlocks in both centralized and distributed systems.
Preface

Main Memory
Main memory has always been a scarce resource, and much of the past operating systems research has been devoted to its efficient use. Many of these results have become classical topics of operating systems; these are covered in Chapters 7, 8, and 9. Among these topics are techniques for physical memory allocation, implementation of virtual memory using paging or segmentation, and static and dynamic sharing of data and code. We also present the principles of distributed shared memory, which may be viewed as an extension of virtual memory over multiple computers interconnected by a communication network.

File Systems and I/O
Files were devised in the early days of computing as a convenient way to organize and store data on secondary storage devices. Although the devices have evolved dramatically, the basic principles of files have not. In Chapter 10, we discuss file types and their representations on disks or tapes. We also present ways of organizing and implementing file directories. In recent years, the most significant developments in the file systems area have been driven by the proliferation of networking. Many systems today do not maintain their own file systems on local drives. Instead, a more typical configuration is a network of machines, all accessing dedicated file servers. Frequently, the file systems are distributed over multiple servers or multiple networks. The last section of the chapter addresses file systems issues in such distributed environments.

Hiding the details of individual I/O devices by supporting higher-level abstractions has always been one of the main tasks of operating systems. Modern systems must continue to provide this essential service, but with a larger variety of faster and more sophisticated devices. Chapter 11 is devoted to this topic, presenting the principles of polling, interrupts, and DMA, as employed by various device drivers. Also discussed are device-independent aspects of I/O processing, including buffering and caching, error-handling, and device scheduling.

Protection and Security
Protecting a computing facility from various attacks requires a broad spectrum of safeguards. Chapter 12 focuses on the protection and security interface of the system, which guards the system access. This requires authentication of users, remote services, and clients. Despite many technological breakthroughs, user authentication still relies largely on passwords presented by users at the time of login. But the existence of computer networks has again stimulated the most dramatic developments in protection and security: the vulnerability of communication lines makes it necessary to employ techniques in secret or public key cryptography. We discuss the application of cryptographic methods both to protect information transmitted between computers and to verify its authenticity.

Once a user has entered the system, the system must control the set of resources accessible to that user. This is accomplished by hardware mechanisms at the instruction level and by access or capability lists at the software level. In addition, mechanisms to prevent unauthorized flow of information among different users also must be provided. Chapter 13 discusses internal protection mechanisms.
EXERCISES AND PROGRAMMING PROJECTS
Each chapter ends with a set of exercises reflecting the presented topics. The exercises have been chosen carefully to satisfy the needs of different teaching styles. Each exercise set contains both analytical and constructive exercises, where students must apply conceptual knowledge acquired from the chapter to solve specific problems. We also have included questions that lend themselves to discussion or speculative analysis. A solutions manual is available to professors; they can obtain a copy from their local Prentice-Hall representative.

The set of five large programming projects and several smaller programming exercises at the end of the book are designed to complement the conceptual understanding gained from the book with practical hands-on experience. They may be used selectively as term projects or can serve as the basis for a separate laboratory component in operating systems.

APPROACH AND PHILOSOPHY
As expected, we provide in-depth coverage of all standard topics in the field of operating systems. A conventional approach typically also includes separate chapters on operating systems support for distributed network-based environments, usually appearing at the end of the text. The problem with this organization is that it makes an artificial distinction between centralized and distributed systems. In reality, there is often no clear demarcation line between the two, and they have many issues in common. Concurrency and parallelism have always been a major topic of operating systems. Even the earliest mainframes of the 1950s and 1960s attempted to overlap CPU execution with I/O processing to achieve better utilization of both. Advanced programming techniques of the 1970s and 1980s made it necessary to support concurrent processes at the user level, leading operating systems designers to provide new process synchronization and scheduling techniques, many of which also apply to networked environments. The last two decades have forced software manufacturers to seriously consider networking and physical distribution, and to integrate the necessary tools and techniques into their operating systems products.

We have chosen to preserve the natural relationship and overlap between centralized and distributed operating systems issues by integrating them within each chapter. The main distributed operating systems topics presented include message-based synchronization and remote procedure calls, distributed deadlocks, distributed shared memory, distributed file systems, and secure communication using cryptography.

Following the above philosophy, we also have refrained from presenting case studies of existing operating systems in separate chapters. Instead, we have distributed and integrated all case studies—from Unix, Linux, Windows, and many other influential operating systems—throughout the chapters. They illustrate the relevance of each concept at the time of its presentation.

Lubomir Bic
May 2002

Alan Shaw
Contents

1 Introduction

1.1 The Role of Operating Systems ... 1
1.1.1 Bridging the Hardware/Application Gap 1
1.1.2 Three Views of Operating Systems 6
1.2 Organization of Operating Systems 11
1.2.1 Structural Organization .. 11
1.2.2 The Hardware Interface ... 12
1.2.3 The Programming Interface .. 15
1.2.4 The User Interface .. 17
1.2.5 Runtime Organization ... 24
1.3 Operating System Evolution and Concepts 25
1.3.1 Early Systems ... 26
1.3.2 Batch Operating Systems ... 27
1.3.3 Multiprogramming Systems .. 28
1.3.4 Interactive Operating Systems ... 30
1.3.5 Personal Computer and Workstation Operating Systems 31
1.3.6 Real-Time Operating Systems .. 32
1.3.7 Distributed Operating Systems ... 33

Part One Process Management and Coordination 37

2 Basic Concepts: Processes and Their Interactions 39
2.1 The Process Notion .. 39
2.2 Defining and Instantiating Processes 41
2.2.1 Precedence Relations Among Processes 41
2.2.2 Implicit Process Creation ... 44
2.2.3 Explicit Process Creation with
 \texttt{fork} and \texttt{join} .. 47
2.2.4 Process Declarations and Classes 51
2.3 Basic Process Interactions .. 52
2.3.1 Competition: The Critical Section Problem 52
2.3.2 Cooperation ... 58
2.4 Semaphores ... 59
2.4.1 Semaphore Operations and Data ... 60
2.4.2 Mutual Exclusion with Semaphores 61
2.4.3 Semaphores in Producer/Consumer Situations 62
2.5 Event Synchronization .. 64
Contents

3 Higher-Level Synchronization and Communication

3.1 Shared Memory Methods ... 71
3.1.1 Monitors ... 71
3.1.2 Protected Types ... 76
3.2 Distributed Synchronization and Communication 77
3.2.1 Message-Based Communication 77
3.2.2 Procedure-Based Communication 83
3.2.3 Distributed Mutual Exclusion 87
3.3 Other Classic Synchronization Problems 90
3.3.1 The Readers/Writers Problem 90
3.3.2 The Dining Philosophers Problem 92
3.3.3 The Elevator Algorithm 94
3.3.4 Event Ordering with Logical Clocks 97

4 The Operating System Kernel: Implementing Processes and Threads

4.1 Kernel Definitions and Objects 105
4.2 Queue Structures .. 108
4.2.1 Resource Queues in an Operating System 108
4.2.2 Implementations of Queues 109
4.3 Threads ... 112
4.4 Implementing Processes and Threads 114
4.4.1 Process and Thread Descriptors 114
4.4.2 Implementing Operations on Processes 120
4.4.3 Operations on Threads 123
4.5 Implementing Synchronization and Communication Mechanisms .. 123
4.5.1 Semaphores and Locks 124
4.5.2 Monitor Primitives .. 128
4.5.3 Clock and Time Management 130
4.5.4 Communication Primitives 136
4.6 Interrupt Handling ... 139

5 Process and Thread Scheduling

5.1 Organization of Schedulers 147
5.1.1 Embedded and Autonomous Schedulers 147
5.1.2 Priority Scheduling ... 149
5.2 Scheduling Methods ... 151
5.2.1 A Framework for Scheduling 151
5.2.2 Common Scheduling Algorithms 154
5.2.3 Comparison of Methods 159
5.3 Priority Inversion .. 168
5.4 Multiprocessor and Distributed Scheduling 170

6 Deadlocks

6.1 Deadlock with Reusable and Consumable Resources 178
6.1.1 Reusable and Consumable Resources 178
6.1.2 Deadlocks in Computer Systems 179
6.2 Approaches to the Deadlock Problem 181
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3 A System Model</td>
<td>182</td>
</tr>
<tr>
<td>6.3.1 Resource Graphs</td>
<td>182</td>
</tr>
<tr>
<td>6.3.2 State Transitions</td>
<td>183</td>
</tr>
<tr>
<td>6.3.3 Deadlock States and Safe States</td>
<td>184</td>
</tr>
<tr>
<td>6.4 Deadlock Detection</td>
<td>186</td>
</tr>
<tr>
<td>6.4.1 Reduction of Resource Graphs</td>
<td>187</td>
</tr>
<tr>
<td>6.4.2 Special Cases of Deadlock Detection</td>
<td>187</td>
</tr>
<tr>
<td>6.4.3 Deadlock Detection in Distributed Systems</td>
<td>189</td>
</tr>
<tr>
<td>6.5 Recovery from Deadlock</td>
<td>192</td>
</tr>
<tr>
<td>6.5.1 Process Termination</td>
<td>192</td>
</tr>
<tr>
<td>6.5.2 Resource Preemption</td>
<td>193</td>
</tr>
<tr>
<td>6.6 Dynamic Deadlock Avoidance</td>
<td>194</td>
</tr>
<tr>
<td>6.6.1 Claim Graphs</td>
<td>194</td>
</tr>
<tr>
<td>6.6.2 The Banker’s Algorithm</td>
<td>194</td>
</tr>
<tr>
<td>6.7 Deadlock Prevention</td>
<td>198</td>
</tr>
<tr>
<td>6.7.1 Eliminating the Mutual-Exclusion Condition</td>
<td>198</td>
</tr>
<tr>
<td>6.7.2 Eliminating the Hold-and-Wait Condition</td>
<td>198</td>
</tr>
<tr>
<td>6.7.3 Eliminating the Circular-Wait Condition</td>
<td>199</td>
</tr>
</tbody>
</table>

Part Two Memory Management

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 Physical Memory</td>
<td>207</td>
</tr>
<tr>
<td>7.1 Preparing a Program for Execution</td>
<td>207</td>
</tr>
<tr>
<td>7.1.1 Program Transformations</td>
<td>207</td>
</tr>
<tr>
<td>7.1.2 Logical-to-Physical Address Binding</td>
<td>208</td>
</tr>
<tr>
<td>7.2 Memory Partitioning Schemes</td>
<td>212</td>
</tr>
<tr>
<td>7.2.1 Fixed Partitions</td>
<td>213</td>
</tr>
<tr>
<td>7.2.2 Variable Partitions</td>
<td>214</td>
</tr>
<tr>
<td>7.2.3 The Buddy System</td>
<td>218</td>
</tr>
<tr>
<td>7.3 Allocation Strategies for Variable Partitions</td>
<td>220</td>
</tr>
<tr>
<td>7.3.1 Measures of Memory Utilization</td>
<td>221</td>
</tr>
<tr>
<td>7.4 Managing Insufficient Memory</td>
<td>224</td>
</tr>
<tr>
<td>7.4.1 Memory Compaction</td>
<td>224</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Virtual Memory</td>
<td>231</td>
</tr>
<tr>
<td>8.1 Principles of Virtual Memory</td>
<td>231</td>
</tr>
<tr>
<td>8.2 Implementations of Virtual Memory</td>
<td>233</td>
</tr>
<tr>
<td>8.2.1 Paging</td>
<td>233</td>
</tr>
<tr>
<td>8.2.2 Segmentation</td>
<td>240</td>
</tr>
<tr>
<td>8.2.3 Paging with Segmentation</td>
<td>241</td>
</tr>
<tr>
<td>8.2.4 Paging of System Tables</td>
<td>242</td>
</tr>
<tr>
<td>8.2.5 Translation Look-Aside Buffers</td>
<td>245</td>
</tr>
<tr>
<td>8.3 Memory Allocation in Paged Systems</td>
<td>246</td>
</tr>
<tr>
<td>8.3.1 Global Page Replacement Algorithms</td>
<td>249</td>
</tr>
<tr>
<td>8.3.2 Local Page Replacement Algorithms</td>
<td>256</td>
</tr>
<tr>
<td>8.3.3 Load Control and Thrashing</td>
<td>262</td>
</tr>
<tr>
<td>8.3.4 Evaluation of Paging</td>
<td>266</td>
</tr>
</tbody>
</table>
Contents

9 Sharing of Data and Code in Main Memory 274
 9.1 Single-Copy Sharing ... 274
 9.1.1 Reasons for Sharing 274
 9.1.2 Requirements for Sharing 275
 9.1.3 Linking and Sharing 277
 9.2 Sharing in Systems without Virtual Memory 278
 9.3 Sharing in Paging Systems 279
 9.3.1 Sharing of Data .. 279
 9.3.2 Sharing of Code .. 281
 9.4 Sharing in Segmented Systems 283
 9.4.1 Sharing of Code and Data 283
 9.4.2 Unrestricted Dynamic Linking 284
 9.5 Principles of Distributed Shared Memory 287
 9.5.1 The User’s View of Distributed Shared Memory 288
 9.6 Implementations of Distributed Shared Memory 290
 9.6.1 Implementing Unstructured Distributed Shared Memory 290
 9.6.2 Implementing Structured Distributed Shared Memory 296

Part Three File Systems and Input/Output 303

10 File Systems 305
 10.1 Basic Functions of File Management 305
 10.2 Hierarchical Model of a File System 306
 10.3 The User’s View of Files 309
 10.3.1 File Names and Types 309
 10.3.2 Logical File Organization 311
 10.3.3 Other File Attributes 313
 10.3.4 Operations on Files 314
 10.4 File Directories .. 315
 10.4.1 Hierarchical Directory Organizations 316
 10.4.2 Operations on Directories 322
 10.4.3 Implementation of File Directories 325
 10.5 Basic File System .. 329
 10.5.1 File Descriptors ... 329
 10.5.2 Opening and Closing Files 330
 10.6 Device Organization Methods 333
 10.6.1 Contiguous Organization 334
 10.6.2 Linked Organization 335
 10.6.3 Indexed Organization 336
 10.6.4 Management of Free Storage Space 337
 10.7 Principles of Distributed File Systems 339
 10.7.1 Directory Structures and Sharing 339
 10.7.2 Semantics of File Sharing 343
 10.8 Implementing Distributed File System 344
 10.8.1 Basic Architecture 344
 10.8.2 Caching .. 345
Contents

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.8.3</td>
</tr>
<tr>
<td>10.8.4</td>
</tr>
</tbody>
</table>

11 Input/Output Systems

- 11.1 Basic Issues in Device Management | 357
- 11.2 A Hierarchical Model of the Input/Output System | 359
 - 11.2.1 The Input/Output System Interface | 359
- 11.3 Input/Output Devices | 363
 - 11.3.1 User Terminals | 363
 - 11.3.2 Printers and Scanners | 366
 - 11.3.3 Secondary Storage Devices | 367
 - 11.3.4 Performance Characteristics of Disk | 370
 - 11.3.5 Networks | 372
- 11.4 Device Drivers | 373
 - 11.4.1 Memory-Mapped Versus Explicit Device Interfaces | 375
 - 11.4.2 Programmed Input/Output with Polling | 376
 - 11.4.3 Programmed Input/Output with Interrupts | 379
 - 11.4.4 Direct Memory Access | 383
- 11.5 Device Management | 386
 - 11.5.1 Buffering and Caching | 386
 - 11.5.2 Error Handling | 392
 - 11.5.3 Disk Scheduling | 397
 - 11.5.4 Device Sharing | 400

Part Four Protection and Security

- 12 The Protection and Security Interface | 405
 - 12.1 Security Threats | 407
 - 12.1.1 Damage Types | 408
 - 12.1.2 Vulnerable Resources | 409
 - 12.1.3 Attack Types | 410
 - 12.2 Functions of a Protection System | 418
 - 12.2.1 External Safeguards | 418
 - 12.2.2 Verification of User Identity | 419
 - 12.2.3 Communication Safeguards | 420
 - 12.2.4 Threat Monitoring | 420
 - 12.3 User Authentication | 420
 - 12.3.1 Approaches to Authentication | 420
 - 12.3.2 Passwords | 422
 - 12.4 Secure Communication | 426
 - 12.4.1 Principles of Cryptography | 426
 - 12.4.2 Secret-Key Cryptosystems | 428
 - 12.4.3 Public-Key Cryptosystems | 433

- 13 Internal Protection Mechanisms | 442
 - 13.1 The Access Control Environment | 442
Contents

13.2 Instruction-Level Access Control .. 443
 13.2.1 Register and Input/output Protection 443
 13.2.2 Main Memory Protection ... 444
13.3 High-Level Access Control .. 450
 13.3.1 The Access Matrix Model .. 450
 13.3.2 Access Lists and Capability Lists 452
 13.3.3 A Comprehensive Example: Client/Server Protection 461
 13.3.4 Combining Access Lists and Capability Lists 463
13.4 Information Flow Control ... 464
 13.4.1 The Confinement Problem ... 464
 13.4.2 Hierarchical Information Flow 467

Part Five Programming Projects ... 475

PROJECTS

I Process/Thread Synchronization .. 477
 1 Project Overview ... 477
 2 Setting Up a Race Condition ... 477
 3 Solutions to the Critical Section Problem 478
 3.1 Solution Using mutex Locks 478
 3.2 Software Solution ... 479
 4 Implementing General Semaphores 479
 4.1 Solution Using Mutex Locks and Condition Variables 479
 4.2 Software Solution ... 479
 5 Bounded Buffer .. 480
 6 Summary of Specific Tasks ... 480
 7 Ideas for Additional Tasks ... 480

II Process and Resource Management ... 482
 1 Project Overview ... 482
 2 Basic Process and Resource Manager 482
 2.1 Process States .. 482
 2.2 Representation of Processes ... 483
 2.3 Representation of Resources ... 483
 2.4 Operations on Processes and Resources 484
 2.5 The Scheduler .. 485
 2.6 The Presentation Shell ... 487
 3 Extended Process and Resource Manager 488
 3.1 Timeout Interrupts .. 488
 3.2 Input/Output Processing .. 489
 3.3 The Extended Shell .. 489
 4 Summary of Specific Tasks ... 490
 5 Ideas for Additional Tasks ... 490
III Main Memory Management
1. Project Overview 492
2. The Memory Manager 492
 2.1 Main Memory 492
 2.2 The User Interface 493
3. The Simulation Experiment 493
 3.1 Generating Request Sizes 494
 3.2 Gathering Performance Data 495
 3.3 Choosing a Block to Release 495
4. Summary of Specific Tasks 495
5. Ideas for Additional Tasks 495

IV Page Replacement Algorithms
1. Project Overview 496
2. Global Page Replacement Algorithms 496
3. Local Page Replacement Algorithms 497
4. Generating Reference Strings 498
5. Performance Evaluations 499
6. Summary of Specific Tasks 500
7. Ideas for Additional Tasks 500

V File System
1. Project Overview 501
2. The Input/Output System 501
3. The File System 502
 3.1 Interface Between User and File System 502
 3.2 Organization of the File System 502
 3.3 The Directory 503
 3.4 Creating and Destroying a File 503
 3.5 Opening and Closing a File 504
 3.6 Reading, Writing and Seeking in a File 504
 3.7 Listing the Directory 505
4. The Presentation Shell 505
5. Summary of Specific Tasks 506
6. Ideas for Additional Tasks 506

Other Programming Projects
1. Timer Facility 507
2. Process Scheduling 507
3. The Banker’s Algorithm 508
4. Disk Scheduling Algorithm 508
5. Stable Storage 509

Glossary .. 510

Bibliography 525

Index .. 529